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Recent improvements in state-of-the-art (SOA) batteries driven 
by the automotive sector have led to many electrified aircraft 

concepts choosing batteries as the preferred energy-storage 
method. Current SOA batteries are at the point of enabling 
certain hybrid and all-electric aircraft, particularly small, short 

range, lower speed aircraft. Higher performance batteries 
improve aircraft range and can enable larger, higher speed 
aircraft. In this work, we develop specific energy projections for 

future electrified aircraft. The projections are developed based 
on examining historical commercial SOA trends as well as 
practical limitations of future chemistries. Accurate projections 

of future specific energy values are important for estimating the 
timeline for commercial introduction of electrified aircraft. This 
work estimates nominal cell level specific energies for 

rechargeable batteries of 489 Wh/kg by 2030, 638 Wh/kg by 
2040, and 764 Wh/kg by 2050. More conservative as well as more 
aggressive estimates are also provided. 

I. INTRODUCTION 

Electrified Aircraft Propulsion (EAP) includes fully 

electric, hybrid electric, and turboelectric approaches to 

provide power to electric motors which drive propulsors (fans 

or propellers) to create thrust.  EAP is being considered for the 

range of aircraft from small drones to 300 passenger future 

aircraft concepts. Smaller, short range, relatively slowly flying 

aircraft have already been created with existing battery 

technologies. Future aircraft battery requirements are highly 

dependent on mission design and EAP configuration. 

However, lighter weight and higher efficiency batteries enable 

certain configurations and increase the benefits for systems 

that already come close with existing batteries.  Misra 

provides an overview of battery specific energy needs for 

future aircraft calling out ranges between 250 to 1000 Wh/kg 

[1] (watt-hour per kilogram).  A representative aircraft 

concept study by Dean examines aircraft performance over 

ranges between 200 and 1500 Wh/kg [2]. This paper provides 

an initial projection of future battery specific energy 

performance based on historical rates of progress and 

maximum specific energy limits for some select chemistries.   

II. HISTORICAL BATTERY SPECIFIC ENERGY TRENDS 

Only secondary batteries were considered in this study. 

These batteries are rechargeable and would be preferably 

implemented in Hybrid Electric aircraft to meet emissions 

targets. Improving battery specific energy density is critical 

for enabling hybrid electric and all electric aircraft. Specific 

energy density is defined by the units of watt-hour per 

kilogram. This is a gravimetric, or weight-focused analysis.  

 

A. Methodology 

Battery data was collected and organized. This battery 

data includes past and presently available cells and batteries 

across a wide range of chemistries. Data collected includes 

release year, specific energy, nominal voltage, C-rate, model 

level, and availability type. Availability was used to 

categorize cells and commercially available or only produced 

for research. Model level identified if the data described cell 

or pack level properties.  Historical cell information was used 

to create projections of future cell performance.  In cases 

where data was available for both cells and packs with the 

same chemistry, the knockdown factor (or packing factor) 

between the cell and battery pack could be determined. 

Candidate cells were screened to find the most applicable 

types for Electrified Aircraft Propulsion (EAP) applications. 

Screened cells have a few key qualities including: cell specific 

energy sufficient to scale to aircraft batteries, a C-rate greater 

than or equal to 3C, the best performance of the chemistry and 

timeframe, and secondary (rechargeable) capabilities. 

First, a number of linear and exponential trend projections 

are made by grouping together subsets of the historical cell 

data.  Performance based groupings were: highest energy 

density cell every decade, best commercial cell available, and 

best overall cell (including the most feasible prototype) 

available. Trends were also generated using chemistry and 

chemistry technology groupings (such as Li-ion).  

The second step was the creation of future performance 

projections using a Boltzmann Sigmoid, or S-Curve, 

projection of the aglomerated specific energies data sets. S-

Curves have four major variables that equate to right-hand 

asymptote, left-hand asymptote, inflection point, and a rate of 

change variable. This process yielded the Boltzmann variables 

that allowed us to create the S-Curves.  S-Curve projections 

were selected to reflect and initial phase of gradual 

performance improvement, an intermidary phase or rapid 

advancement, and a final phase of technology maturation with 

slowing performance gains. 

The available cell performance data set is unevenly 

distributed by time and chemistry.  Data sets were conditioned 

prior to creation of the S-Curves in order to avoid biases 

caused by the quantity of data available by decade or 

chemistry.   The projection fits were done by optimizing R2 

over historical trends and data sets by changing the four 

Boltzmann Sigmoid variables.  

  



B. Cell and Pack Historical Data 

After screening the cells down to potentially viable 

candidates, the next step is to select the data to be used for the 

initial linear and exponential trends, along with the S-curve 

projections. This entailed gathering cell and pack data from a 

variety of resources. The majority of data came from two 

databases, A2MAC1 [3] for automotive and 

Batteriesdatabase.com [4] for commercial-off-the-shelf 

(COTS) which included a large variety of cells and battery 

manufactures. Data points were also gathered from a variety 

of non-COTS sources including and not limited to: Solid 

Power, Advano, Pipistrel, Tesla, Porsche, Handbook of 

Batteries [5], NASA, U.S. Department of Energy, Oxis 

Energy, NexTech, and Rolls Battery. These non-COTS 

sources  provided historic examples and near future prototypes 

that were not present in the previously mentioned databases. 

The data was screened using the criteria established in the 

methodoly section and sorted into cell and pack level 

performance information. 

 

Figure 1. Cell and pack Level Specific Energy Data used in this study 

organized by chemistry. 

C. Projections using Linear or Exponential Curves 

Linear and exponential projection curves were made for 

subsets of the cell level energy denisty data.  An exponential 

curve was fitted based on the best performing cell from 1950-

2020, excluding Li-S and Li-Metal cells due to their low 

volume production. With the introduction of Li-ion starting in 

the 1990s, energy densities rapidly increased. Thus, two linear 

fits were plotted based on Li-ion cells: one including Si anodes 

while excluding Li-metal anodes, and another including Li-

metal anodes. Each trend and projection were generated 

without consideration for the density of the data. 

The decade-based projection is blind to the different types 

of chemistry and follow a projection where the highest cell 

available in each decade is considered in a single data point at 

the end of the decade. The decade projection starts in 1950 and 

end in 2020. The year 2020 was decided as a stopping point 

due to the 2020s being the current decade as of writing. The 

trend line excludes Li-S and Li-Metal cells due to their 

extremely low production volumes by 2020. 

For the linear trends, a year frequency of every three years 

was chosen and the max data point available for the chosen 

condition was provided at that frequency. This prevented 

higher density data point areas from dominating the trends. An 

example of this is the cluster of maximum data points seen in 

Figure 1 after 2010 in the ~240Wh/kg range. 

D. Discussion of Linear and Exponential Fits 

Table I contains the equations and R2 values of the 

associated fits seen in Figure 2. The projections in Figure 2 

follow the more recent trends in secondary cell technology. 

The sharp increase in cell-level specific energy is largely 

driven by advancements in Li-ion technology, including the 

introduction of Si and Li-metal as anodes. Li-S has also made 

some advancements, but is a relatively new technology and is 

not quite ready for large-scale commercial production 

required for EAP. 

Table I. CURVE FIT EQUATIONS AND R2
 VALUES 

 Type Equation R2 

1950-2020 

Best Performance 
Exp 𝑦 = 1.922 ∗ 10−22 ∗ 𝑒0.0344𝑥 0.956 

1990-2020 

Li-ion + Si 
Linear 𝑦 = 8.4692𝑥 − 16794 0.944 

1990-2020 

Li-ion + Li-Metal 
Linear 𝑦 = 9.6056𝑥 − 19065 0.872 

 

 

 

Figure 2. Battery cell energy density historical data, linear, curve fits. 

Fitting the exponential curve to the data of the highest 

specific energy cell from each decade leads to an R2 value of 

0.956, which indicates that the data fits the regression model 

well. However, as Li-ion technology improves in the 2000s, 

we can begin to see our exponential curve start to underfit the 

data, which it continues to do in the present day with the 

introduction of Si and Li metal anodes. This leads us into 

examining our two linear fits. 

Our linear fits begin with the introduction of Li-ion cells 

around 1990 and continue into the present day. Over the last 

30+ years, Li-ion has been a leader in specific energy and 

continues to improve due to advancements in cathode, anode, 

and electrolyte technologies. In pursuit of continuous 

improvements in specific energy, much focus has been 

directed on anode materials for Li-ion cells beyond the typical 

carbon-based anode. Si and Li-metal are two strong candidates 

due to their high theoretical specific energy.  

The first linear fit includes Si in the anode. Si has begun to 

be used as a dopant in anodes as a means of increasing the 

specific energy. Cells with pure Si anodes have had trouble 

reacing the market due to their poor lifetime characteristics, 



although there are efforts aimed at pure Si anodes. The linear 

fit for Li-ion + Si ignores Li-metal and Li-S data due to its low 

scale production. For the Li-ion + Si linear fit, we have an R2 

value of 0.944.  

While Si has been slowly introduced to carbon-based 

anodes over time, Li metal cells require replacing the entire 

anode with Li metal. Li metal suffers from safety issues due 

to the ability to grow dendrites, which can puncture the 

separator and lead to a short circuit. Multiple companies have 

been examining how to introduce Li metal as an anode, 

including using solid state separators or non-flammable 

electrolytes paired with a passivating layer on the Li metal 

surface. These technologies have begun to be introduced in 

pre-commercial products, resulting in cells that have specific 

energies >400 Wh/kg. While the production is not yet at the 

level needed to support EAP, it is expected that several 

companies will be able to increase their production to meet 

EAP needs within the decade. Because of this, a separate 

linear fit was used for Li-metal cells due to the drastic increase 

in specific energy compared to carbon based and/or Si based 

anodes. Our linear fit of Li-ion + Li-metal has an R2 value of 

0.844. This can be explained by the more drastic increase in 

specific energy seen by replacing carbon-based anodes with 

pure Li-metal.  

 

E. Cell Level Limits 

Each cell has a theoretical limit based on the chemistry of 

the cathode and the anode. There is also a practical limit, 

which includes the mass of electrochemically inactive 

components such as current collectors, separators, electrolyte, 

additives, tabs, and packaging. A percentage of the theoretical 

limit can give an insight into how mature a chemistry is, or 

how close to maturity a chemistry may be. Lithium-ion is 

difficult to measure maturity due to the mixture of different 

cathode and anode chemistries. 

Theoretical limits of different chemistries were obtained 

from the work of Zu and Li [6] and presented in Table II. 

Various cathode and anode pairings were investigated, with 

the highest theoretical capacity being a sulfur cathode paired 

with a Lithium-metal anode. For this study, metal-air and 

metal-oxygen systems were not considered due to the low 

number of commercial products available as well as the added 

complexity associated with the balance of plant. Practical 

limits were estimated by incorporating the mass of the current 

collectors, assuming an electrolyte-to-sulfur ratio of one, 

assuming no excess Li (Lithium) metal in the anode, and using 

practical loading values used in Li-ion electrodes today, 

estimated using the A2Mac1 benchmarking reports for 

various cells used in EVs. For the given calculation, the max 

Li-ion specific energy from Power Sources Database [4] was 

used. Lithium-Sulfur has large potential by this measure due 

to high theoretical limit and low realized specific energy. 

Table II. BATTERY SPECIFIC ENERGY CHEMISTRY LIMITS 

Chemistry 
Theoretical Limit 

(Wh/kg) [6] 

Achieved as of 

2022 (Wh/kg) 

Achieved/ 

Theoretical 

LiCoO2/C6 568 275 48.4% 

Pd-Acid 171 55 32.2% 

NiMH 240 116 48.3% 

Li-S 2654 420 15.8% 

Na-S 792 240 30.3% 

F. Boltzmann Sigmoid Projected Cell Specific Energy 

Due to the theoretical and practical limits of specific 

energy that cells can achieve, eventually exponential and 

linear fits would exceed the possible specific energy. 

Because of this, fitting an S-Curve is necessary to provide a 

more realistic projection than an assumption of continuous, 

never-ending exponential or linear growth. For this work, a 

Boltzmann Signoid function was used. The Boltzmann 

Sigmoid function is as follows: 

                                  𝑆(𝑡) = 𝑎 +
𝑏

1 + 𝑒𝑐(𝜏−𝑡)
                              (1) 

where “a” is the left-hand (past) limit, “b” is the right-hand 

(future) limit, “c” is the S-Curve rate of change, “𝜏” is the year 

we achieve half of our theoretical limit, and “t” is the year.  

The Boltzmann Sigmoid variables were optimized to 

maximize R2 of the function to the past data 

Past data trends were used to pick out a conservative, 

nominal, and aggressive trend. The conservative projection is 

fit to the data from all cells from 1950 to 2010. The nominal 

projection follows the best in production batteries in the 1990 

to 2022 timeframe (which includes recent rapid advances due 

to competition in the Li-ion space). The optimistic projection 

includes the best in production batteries in the nominal and 

advanced prototypes (such as Li-metal and Li-S) that have 

proven feasibility but are still in the prototype stage.   

The conservative and aggressive S-curve projections were 

built off the historical data selected for each. The fitted S-

curve data were sampled at the three-year rate for the 

aggressive trend and a ten-year rate for the conservative trend. 

The conservative trend follows improvements every decade 

over changing chemistries. Like the nominal projection, these 

trends had an S-Curve fitted to them by maximizing the R2 

value over the trend points.  

The final Boltzmann Sigmoid variables for this projection 

give the continuous function of each projection. The variables 

are presented in Table III. Through these variables, different 

aspects of the sigmoid function can be examined. The variable 

tau (𝜏) represents the inflection point of the data. This is the 

point at which the data transitions from rapidly increasing 

growth to diminishing as the technology matures. This point 

will be an important test in the future whether technology 

progression is on track with the projected target.  

Table III. CELL ENERGY DENSITY BOLTZMANN VARIABLES  

C = Conservative 

N = Nominal 
A = Aggressive 

Boltzmann Variables 

C N A 

a 9.6 0.0 32.5 

b 659.1 801.8 1009.0 

c 0.0436 0.0607 0.0786 

τ 2042.5 2030.8 2030.6 

 

Comparing the projections can be done by examining the 

Boltzmann variables. The aggressive and nominal projections 

have similar tau values suggesting that the technology 

maturation over time may have similar progression pacing, but 

different asymptote projections. This also lends to the 

similarity of the two projections. Each of these projections is 

based more heavily on recent technological progressions. The 

nominal and aggressive projections are influenced heavily by 



the recent developments in Li-ion technology and proposed 

future developments in Si and Li-metal anodes as well as Li-

S cells. Tau for the conservative projection is a later year, 

representing the more conservative projection will have a 

longer time before specific energy density increases start 

diminishing. The three curves can be seen in Figure 4. 

G. Accuracy of Boltzmann Sigmoid Fits 

The S-curve projections were able to fit the underlying data 

cell specific energy well. S-Curves have approximate R2 

values of 0.94, 0.96, and 0.96 for conservative, nominal, and 

aggressive projections when compared to the underlying 

trends. Features in the data can attribute to the high R2. 

However, this high value contributes to a statement of 

projection accuracy. Projection forecast accuracy then falls on 

the quality of the data gathered, and the predictability of the 

conclusions drawn in the entire process. 

The nominal S-Curve projection displayed in Figure 3 

provides a direct comparison of the S-Curve correlation to the 

underlying data. This generated an S-Curve that can visibly be 

seen to match the underlying data well. The projection has a 

high R2 value of >0.96 and is calculated using 

                               𝑅2 =
∑((𝑦𝑖 − 𝑓(𝑥𝑖))

2
)

∑(𝑦𝑖 − 𝑓)̅
2                               (2) 

which is the Boltzmann sigmoid error function. Where, 𝑓 ̅ is 

the mean of the data, 𝑦𝑖  represents the value of the sigmoid in 

a certain year, and  𝑓(𝑥𝑖) represents the value of a data point 

in a certain year. The data is also ‘smoothed’ by only including 

data points at a specific interval. For data used in the nominal 

projection, the interval is every three years. This data 

smoothing allows for data density to not affect the projection 

and error. However, it does reduce the number of data points 

that can be used to make the S—Curve projection. It is 

beneficial to smooth the data this way so the projection stays 

unbiased to the number of underlying data points over time. 

The Nominal projection here compares to the raw data points 

in the “Top Available Production” cell grouping.  

 

 

Figure 3. Example S-Curve matching to underlying data. This is the 

Nominal S-Curve projection and underlying data before the packing factor, 

or pack knockdown factor, is applied. The projection has a R2 value of 0.96. 

III. BATTERY LEVEL INFORMATION   

A. Cell to Pack Derating Factor 

While this work reports cell-level specific energies, the true 

interest to integrators is the pack-level specific energy. To 

make a functional battery pack, other components besides the 

cells are needed, including wiring, battery management 

systems (BMS), thermal management, safety features, and a 

battery enclosure, among other components. The pack burden, 

which accounts for the additional components needed to make 

a functional pack, is heavily dependent on the exact cell 

chosen and is dependent on many factors, including the form 

factor, desired safety level in case of thermal runaway, and 

overall performance of the pack.  

Considerable information is available on pack burdens in 

commercial electric vehicles for a variety of form factors. 

Information gathered from the A2Mac1 Automotive 

Benchmarking reports [3] shows that the state-of-the-art 

(SOA) packing factor is ~60% for soft-case pouch cells, ~70% 

for cylindrical cells, and has achieved 84.5% for hard-case 

prismatic cells with the BYD Blade battery design [7-8]. 

These percentages represent the cell weight percentage of the 

entire pack. The remaining percentage is accounted for in the 

wiring, BMS, thermal management systems, safety features, 

and battery enclosure. Future improvements in the pack 

burden are expected as cell level technology becomes safer 

using non-flammable electrolytes and the introduction of 

solid-state designs. The examples from these sources led 0.7, 

0.8, and 0.9 to be the packing factor multipliers to apply to the 

conservative, nominal, and aggressive. These multipliers 

would predict packing factor improvement while staying 

relatively realistic in reference to the prismatic cell BYD 

Blade battery design. Pack level specific energy S-curve 

projections were created by multiplying the conservative cell 

S-curve projection by the conservative packing factor 

multiplier, the nominal cell S-curve projection by the nominal 

packing factor multiplier, and the aggressive cell S-curve 

projection by the aggressive packing factor multiplier. These 

values can be seen in Table IV. 

B. Cell to Pack Derating Factor 

Li-ion cells are known for their high energy efficiencies, 

which can approach 100% if discharged at a low enough rate 

(<<C/10). However, practical applications require higher 

discharge rates, resulting in lower efficiency. Overall 

efficiency is dependent on factors such as chemistry, cell form 

factor, electrode structure, and discharge rate.  

Real data is used to estimate the efficiency of batteries in 

practical applications. NASA internal testing data has shown 

that a commercial 18650 cell designed for high power has an 

energy efficiency of 95% when discharged at a constant 3C 

rate. Real-world fast charging data of a 2021 Porsche Taycan 

has shown the ability to charge from 0% to 100% SOC with 

90% efficiency [9]. A 90% charging efficiency and a 95% 

discharging efficiency lead to a total round trip efficiency, or 

how much usable energy is available from the energy output 

from the charger, of 86%, which is used as the conservative 

estimates for 2030 [10].  

Future increases in the efficiency are estimated based on 

further improvements in the reduction of internal resistance at 

the cell level and improvements in charging efficiency. These 



may come from a variety of factors, including form factor 

improvements, cell additive improvements, and power 

management and distribution efficiency improvements. It 

should be noted that efficiencies will decrease as a function of 

temperature and cell age. While these estimates are based on 

real-world conditions, they are mostly made using fresh cells. 

So, it is expected for the overall efficiency to decrease over 

the lifetime of the pack. Estimated round-trip efficiencies can 

be found in Table IV. 

IV. BATTERY KEY PERFORMANCE PARAMETER 

PROJECTIONS 

Table IV presents the cell and battery level energy densities 

and the efficiency projections for 2030, 2040, and 2050.  

Conservative, nominal, and aggressive rates of technology 

advancement are shown to capture the uncertainty of 

projecting future progress.  

The rate of change in each projection can be seen in Figure 

4. The conservative projection is still increasing even after 

2050 and is only 85% of its right-hand limit value. This is 

opposed to the aggressive projection which has reached 95% 

of its projected right-hand future limit value.  

While it is difficult to predict future battery trends and 

chemistry mixes, these the projected value fall within the 

limits of the chemistries considered.  New chemistries will 

also enable further advances.  For example Li-S has a 

theoretical specific energy of a Li-S cell is 2,654 Wh/kg. If a 

Li-S cell is able to achieve ~50% of its theoretical specific 

energy, which is what LiCoO2/C6 and NiMH cells are able to 

achieve, then we could see cells with ~1,330 Wh/kg.  Metal 

air chemistries are another potential path to improvement. 

 

 

Figure 4. Battery Specific Energy future projections as decided by looking at 

different 

Table IV. BATTERY KEY PERFORMANCE PROJECTIONS 

C = Conservative 

N = Nominal 
A = Aggressive 

2030 2040 2050 

C N A C N A C N A 

Cell Level 

Specific Energy 

[Wh/kg] 

359 489 584 459 638 795 561 764 957 

Pack Level 

Specific Energy 

[Wh/kg] 

251 391 525 321 510 715 393 611 861 

Round Trip 

Efficiency % 
86% 89% 92% 87% 90% 93% 88% 91% 94% 

V. CONCLUSIONS 

This paper attempts to project future battery performance 

based on examining historical commercial SOA trends as well  

as practical limitations of future chemistries.  An S-curve 

projection of cell energy densities was combined with a 

packing factor multiplier to project battery pack level specific 

energies in 2030, 2040, and 2050. This work estimates 

nominal cell level specific energies for rechargeable batteries 

of 489 Wh/kg by 2030, 638 Wh/kg by 2040, and 764 Wh/kg 

by 2050. Efficiency projections provided a basic guide to 

show gradual progress from the current state of the art toward 

a four-times reduction in losses by 2050.  This work is 

intended to support aircraft level conceptual modeling of 

Electrified Aircraft Propulsion (EAP) concepts. 
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