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Recent improvements in state-of-the-art (SOA) batteries driven
by the automotive sector have led to many electrified aircraft
concepts choosing batteries as the preferred energy-storage
method. Current SOA batteries are at the point of enabling
certain hybrid and all-electric aircraft, particularly small, short
range, lower speed aircraft. Higher performance batteries
improve aircraft range and can enable larger, higher speed
aircraft. In this work, we develop specific energy projections for
future electrified aircraft. The projections are developed based
on examining historical commercial SOA trends as well as
practical limitations of future chemistries. Accurate projections
of future specific energy values are important for estimating the
timeline for commercial introduction of electrified aircraft. This
work estimates nominal cell level specific energies for
rechargeable batteries of 489 Wh/kg by 2030, 638 Wh/kg by
2040, and 764 Wh/kg by 2050. More conservative as well as more
aggressive estimates are also provided.

. INTRODUCTION

Electrified Aircraft Propulsion (EAP) includes fully
electric, hybrid electric, and turboelectric approaches to
provide power to electric motors which drive propulsors (fans
or propellers) to create thrust. EAP is being considered for the
range of aircraft from small drones to 300 passenger future
aircraft concepts. Smaller, short range, relatively slowly flying
aircraft have already been created with existing battery
technologies. Future aircraft battery requirements are highly
dependent on mission design and EAP configuration.
However, lighter weight and higher efficiency batteries enable
certain configurations and increase the benefits for systems
that already come close with existing batteries. Misra
provides an overview of battery specific energy needs for
future aircraft calling out ranges between 250 to 1000 Wh/kg
[1] (watt-hour per kilogram). A representative aircraft
concept study by Dean examines aircraft performance over
ranges between 200 and 1500 Wh/kg [2]. This paper provides
an initial projection of future battery specific energy
performance based on historical rates of progress and
maximum specific energy limits for some select chemistries.

1. HISTORICAL BATTERY SPECIFIC ENERGY TRENDS

Only secondary batteries were considered in this study.
These batteries are rechargeable and would be preferably
implemented in Hybrid Electric aircraft to meet emissions
targets. Improving battery specific energy density is critical
for enabling hybrid electric and all electric aircraft. Specific
energy density is defined by the units of watt-hour per
kilogram. This is a gravimetric, or weight-focused analysis.

A. Methodology

Battery data was collected and organized. This battery
data includes past and presently available cells and batteries
across a wide range of chemistries. Data collected includes
release year, specific energy, nominal voltage, C-rate, model
level, and availability type. Availability was used to
categorize cells and commercially available or only produced
for research. Model level identified if the data described cell
or pack level properties. Historical cell information was used
to create projections of future cell performance. In cases
where data was available for both cells and packs with the
same chemistry, the knockdown factor (or packing factor)
between the cell and battery pack could be determined.
Candidate cells were screened to find the most applicable
types for Electrified Aircraft Propulsion (EAP) applications.
Screened cells have a few key qualities including: cell specific
energy sufficient to scale to aircraft batteries, a C-rate greater
than or equal to 3C, the best performance of the chemistry and
timeframe, and secondary (rechargeable) capabilities.

First, a number of linear and exponential trend projections
are made by grouping together subsets of the historical cell
data. Performance based groupings were: highest energy
density cell every decade, best commercial cell available, and
best overall cell (including the most feasible prototype)
available. Trends were also generated using chemistry and
chemistry technology groupings (such as Li-ion).

The second step was the creation of future performance
projections using a Boltzmann Sigmoid, or S-Curve,
projection of the aglomerated specific energies data sets. S-
Curves have four major variables that equate to right-hand
asymptote, left-hand asymptote, inflection point, and a rate of
change variable. This process yielded the Boltzmann variables
that allowed us to create the S-Curves. S-Curve projections
were selected to reflect and initial phase of gradual
performance improvement, an intermidary phase or rapid
advancement, and a final phase of technology maturation with
slowing performance gains.

The available cell performance data set is unevenly
distributed by time and chemistry. Data sets were conditioned
prior to creation of the S-Curves in order to avoid biases
caused by the quantity of data available by decade or
chemistry. The projection fits were done by optimizing R?
over historical trends and data sets by changing the four
Boltzmann Sigmoid variables.



B. Cell and Pack Historical Data

After screening the cells down to potentially viable
candidates, the next step is to select the data to be used for the
initial linear and exponential trends, along with the S-curve
projections. This entailed gathering cell and pack data from a
variety of resources. The majority of data came from two
databases, A2MAC1 [3] for automotive and
Batteriesdatabase.com [4] for commercial-off-the-shelf
(COTS) which included a large variety of cells and battery
manufactures. Data points were also gathered from a variety
of non-COTS sources including and not limited to: Solid
Power, Advano, Pipistrel, Tesla, Porsche, Handbook of
Batteries [5], NASA, U.S. Department of Energy, Oxis
Energy, NexTech, and Rolls Battery. These non-COTS
sources provided historic examples and near future prototypes
that were not present in the previously mentioned databases.
The data was screened using the criteria established in the
methodoly section and sorted into cell and pack level
performance information.
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Figure 1. Cell and pack Level Specific Energy Data used in this study
organized by chemistry.

C. Projections using Linear or Exponential Curves

Linear and exponential projection curves were made for
subsets of the cell level energy denisty data. An exponential
curve was fitted based on the best performing cell from 1950-
2020, excluding Li-S and Li-Metal cells due to their low
volume production. With the introduction of Li-ion starting in
the 1990s, energy densities rapidly increased. Thus, two linear
fits were plotted based on Li-ion cells: one including Si anodes
while excluding Li-metal anodes, and another including Li-
metal anodes. Each trend and projection were generated
without consideration for the density of the data.

The decade-based projection is blind to the different types
of chemistry and follow a projection where the highest cell
available in each decade is considered in a single data point at
the end of the decade. The decade projection starts in 1950 and
end in 2020. The year 2020 was decided as a stopping point
due to the 2020s being the current decade as of writing. The
trend line excludes Li-S and Li-Metal cells due to their
extremely low production volumes by 2020.

For the linear trends, a year frequency of every three years
was chosen and the max data point available for the chosen
condition was provided at that frequency. This prevented
higher density data point areas from dominating the trends. An

example of this is the cluster of maximum data points seen in
Figure 1 after 2010 in the ~240Wh/kg range.

D. Discussion of Linear and Exponential Fits

Table | contains the equations and R? values of the
associated fits seen in Figure 2. The projections in Figure 2
follow the more recent trends in secondary cell technology.
The sharp increase in cell-level specific energy is largely
driven by advancements in Li-ion technology, including the
introduction of Si and Li-metal as anodes. Li-S has also made
some advancements, but is a relatively new technology and is
not quite ready for large-scale commercial production
required for EAP.

Table I. CURVE FIT EQUATIONS AND R? VALUES

Type Equation R?
1950-2020 _ -22 0.0344x
Best Performance Exp y=1922+107"~e 0.956
1990-2020 . _
Li-ion + Si Linear y = 8.4692x — 16794 0.944
1990-2020 . _
Li-ion + Li-Metal Linear y = 9.6056x — 19065 0.872
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Figure 2. Battery cell energy density historical data, linear, curve fits.

Fitting the exponential curve to the data of the highest
specific energy cell from each decade leads to an R? value of
0.956, which indicates that the data fits the regression model
well. However, as Li-ion technology improves in the 2000s,
we can begin to see our exponential curve start to underfit the
data, which it continues to do in the present day with the
introduction of Si and Li metal anodes. This leads us into
examining our two linear fits.

Our linear fits begin with the introduction of Li-ion cells
around 1990 and continue into the present day. Over the last
30+ years, Li-ion has been a leader in specific energy and
continues to improve due to advancements in cathode, anode,
and electrolyte technologies. In pursuit of continuous
improvements in specific energy, much focus has been
directed on anode materials for Li-ion cells beyond the typical
carbon-based anode. Si and Li-metal are two strong candidates
due to their high theoretical specific energy.

The first linear fit includes Si in the anode. Si has begun to
be used as a dopant in anodes as a means of increasing the
specific energy. Cells with pure Si anodes have had trouble
reacing the market due to their poor lifetime characteristics,



although there are efforts aimed at pure Si anodes. The linear
fit for Li-ion + Si ignores Li-metal and Li-S data due to its low
scale production. For the Li-ion + Si linear fit, we have an R?
value of 0.944.

While Si has been slowly introduced to carbon-based
anodes over time, Li metal cells require replacing the entire
anode with Li metal. Li metal suffers from safety issues due
to the ability to grow dendrites, which can puncture the
separator and lead to a short circuit. Multiple companies have
been examining how to introduce Li metal as an anode,
including using solid state separators or non-flammable
electrolytes paired with a passivating layer on the Li metal
surface. These technologies have begun to be introduced in
pre-commercial products, resulting in cells that have specific
energies >400 Wh/kg. While the production is not yet at the
level needed to support EAP, it is expected that several
companies will be able to increase their production to meet
EAP needs within the decade. Because of this, a separate
linear fit was used for Li-metal cells due to the drastic increase
in specific energy compared to carbon based and/or Si based
anodes. Our linear fit of Li-ion + Li-metal has an R? value of
0.844. This can be explained by the more drastic increase in
specific energy seen by replacing carbon-based anodes with
pure Li-metal.

E. Cell Level Limits

Each cell has a theoretical limit based on the chemistry of
the cathode and the anode. There is also a practical limit,
which includes the mass of electrochemically inactive
components such as current collectors, separators, electrolyte,
additives, tabs, and packaging. A percentage of the theoretical
limit can give an insight into how mature a chemistry is, or
how close to maturity a chemistry may be. Lithium-ion is
difficult to measure maturity due to the mixture of different
cathode and anode chemistries.

Theoretical limits of different chemistries were obtained
from the work of Zu and Li [6] and presented in Table II.
Various cathode and anode pairings were investigated, with
the highest theoretical capacity being a sulfur cathode paired
with a Lithium-metal anode. For this study, metal-air and
metal-oxygen systems were not considered due to the low
number of commercial products available as well as the added
complexity associated with the balance of plant. Practical
limits were estimated by incorporating the mass of the current
collectors, assuming an electrolyte-to-sulfur ratio of one,
assuming no excess Li (Lithium) metal in the anode, and using
practical loading values used in Li-ion electrodes today,
estimated using the A2Macl benchmarking reports for
various cells used in EVs. For the given calculation, the max
Li-ion specific energy from Power Sources Database [4] was
used. Lithium-Sulfur has large potential by this measure due
to high theoretical limit and low realized specific energy.

Table Il. BATTERY SPECIFIC ENERGY CHEMISTRY LIMITS

Chemistry Theoretical Limit Achieved as of Achievgd/
(Wh/kg) [6] 2022 (Wh/kg) Theoretical
LiCo0,/Cs 568 275 48.4%
Pd-Acid 171 55 32.2%
NiMH 240 116 48.3%
Li-S 2654 420 15.8%
Na-S 792 240 30.3%

F. Boltzmann Sigmoid Projected Cell Specific Energy

Due to the theoretical and practical limits of specific
energy that cells can achieve, eventually exponential and
linear fits would exceed the possible specific energy.
Because of this, fitting an S-Curve is necessary to provide a
more realistic projection than an assumption of continuous,
never-ending exponential or linear growth. For this work, a
Boltzmann Signoid function was used. The Boltzmann
Sigmoid function is as follows:

S(t)=a+m (1)

where “a” is the left-hand (past) limit, “b” is the right-hand
(future) limit, “c” is the S-Curve rate of change, “t” is the year
we achieve half of our theoretical limit, and “t” is the year.
The Boltzmann Sigmoid variables were optimized to
maximize R? of the function to the past data

Past data trends were used to pick out a conservative,
nominal, and aggressive trend. The conservative projection is
fit to the data from all cells from 1950 to 2010. The nominal
projection follows the best in production batteries in the 1990
to 2022 timeframe (which includes recent rapid advances due
to competition in the Li-ion space). The optimistic projection
includes the best in production batteries in the nominal and
advanced prototypes (such as Li-metal and Li-S) that have
proven feasibility but are still in the prototype stage.

The conservative and aggressive S-curve projections were
built off the historical data selected for each. The fitted S-
curve data were sampled at the three-year rate for the
aggressive trend and a ten-year rate for the conservative trend.
The conservative trend follows improvements every decade
over changing chemistries. Like the nominal projection, these
trends had an S-Curve fitted to them by maximizing the R?
value over the trend points.

The final Boltzmann Sigmoid variables for this projection
give the continuous function of each projection. The variables
are presented in Table Ill. Through these variables, different
aspects of the sigmoid function can be examined. The variable
tau () represents the inflection point of the data. This is the
point at which the data transitions from rapidly increasing
growth to diminishing as the technology matures. This point
will be an important test in the future whether technology
progression is on track with the projected target.

Table I11. CELL ENERGY DENSITY BOLTZMANN VARIABLES

C = Conservative Boltzmann Variables

N = Nominal

A = Aggressive C N A
a 9.6 0.0 32.5
b 659.1 801.8 1009.0
c 0.0436 0.0607 0.0786
T 2042.5 2030.8 2030.6

Comparing the projections can be done by examining the
Boltzmann variables. The aggressive and nominal projections
have similar tau values suggesting that the technology
maturation over time may have similar progression pacing, but
different asymptote projections. This also lends to the
similarity of the two projections. Each of these projections is
based more heavily on recent technological progressions. The
nominal and aggressive projections are influenced heavily by



the recent developments in Li-ion technology and proposed
future developments in Si and Li-metal anodes as well as Li-
S cells. Tau for the conservative projection is a later year,
representing the more conservative projection will have a
longer time before specific energy density increases start
diminishing. The three curves can be seen in Figure 4.

G. Accuracy of Boltzmann Sigmoid Fits

The S-curve projections were able to fit the underlying data
cell specific energy well. S-Curves have approximate R2
values of 0.94, 0.96, and 0.96 for conservative, nominal, and
aggressive projections when compared to the underlying
trends. Features in the data can attribute to the high R2.
However, this high value contributes to a statement of
projection accuracy. Projection forecast accuracy then falls on
the quality of the data gathered, and the predictability of the
conclusions drawn in the entire process.

The nominal S-Curve projection displayed in Figure 3
provides a direct comparison of the S-Curve correlation to the
underlying data. This generated an S-Curve that can visibly be
seen to match the underlying data well. The projection has a
high R?value of >0.96 and is calculated using

oo = 20 = F @)
(v —f—)z

which is the Boltzmann sigmoid error function. Where, f is
the mean of the data, y; represents the value of the sigmoid in
a certain year, and f(x;) represents the value of a data point
in a certain year. The data is also ‘smoothed’ by only including
data points at a specific interval. For data used in the nominal
projection, the interval is every three years. This data
smoothing allows for data density to not affect the projection
and error. However, it does reduce the number of data points
that can be used to make the S—Curve projection. It is
beneficial to smooth the data this way so the projection stays
unbiased to the number of underlying data points over time.
The Nominal projection here compares to the raw data points
in the “Top Available Production” cell grouping.
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Figure 3. Example S-Curve matching to underlying data. This is the
Nominal S-Curve projection and underlying data before the packing factor,
or pack knockdown factor, is applied. The projection has a R? value of 0.96.

1. BATTERY LEVEL INFORMATION

A. Cell to Pack Derating Factor

While this work reports cell-level specific energies, the true
interest to integrators is the pack-level specific energy. To
make a functional battery pack, other components besides the
cells are needed, including wiring, battery management
systems (BMS), thermal management, safety features, and a
battery enclosure, among other components. The pack burden,
which accounts for the additional components needed to make
a functional pack, is heavily dependent on the exact cell
chosen and is dependent on many factors, including the form
factor, desired safety level in case of thermal runaway, and
overall performance of the pack.

Considerable information is available on pack burdens in
commercial electric vehicles for a variety of form factors.
Information gathered from the A2Macl Automotive
Benchmarking reports [3] shows that the state-of-the-art
(SOA) packing factor is ~60% for soft-case pouch cells, ~70%
for cylindrical cells, and has achieved 84.5% for hard-case
prismatic cells with the BYD Blade battery design [7-8].
These percentages represent the cell weight percentage of the
entire pack. The remaining percentage is accounted for in the
wiring, BMS, thermal management systems, safety features,
and battery enclosure. Future improvements in the pack
burden are expected as cell level technology becomes safer
using non-flammable electrolytes and the introduction of
solid-state designs. The examples from these sources led 0.7,
0.8, and 0.9 to be the packing factor multipliers to apply to the
conservative, nominal, and aggressive. These multipliers
would predict packing factor improvement while staying
relatively realistic in reference to the prismatic cell BYD
Blade battery design. Pack level specific energy S-curve
projections were created by multiplying the conservative cell
S-curve projection by the conservative packing factor
multiplier, the nominal cell S-curve projection by the nominal
packing factor multiplier, and the aggressive cell S-curve
projection by the aggressive packing factor multiplier. These
values can be seen in Table IV.

B. Cell to Pack Derating Factor

Li-ion cells are known for their high energy efficiencies,
which can approach 100% if discharged at a low enough rate
(<<C/10). However, practical applications require higher
discharge rates, resulting in lower efficiency. Overall
efficiency is dependent on factors such as chemistry, cell form
factor, electrode structure, and discharge rate.

Real data is used to estimate the efficiency of batteries in
practical applications. NASA internal testing data has shown
that a commercial 18650 cell designed for high power has an
energy efficiency of 95% when discharged at a constant 3C
rate. Real-world fast charging data of a 2021 Porsche Taycan
has shown the ability to charge from 0% to 100% SOC with
90% efficiency [9]. A 90% charging efficiency and a 95%
discharging efficiency lead to a total round trip efficiency, or
how much usable energy is available from the energy output
from the charger, of 86%, which is used as the conservative
estimates for 2030 [10].

Future increases in the efficiency are estimated based on
further improvements in the reduction of internal resistance at
the cell level and improvements in charging efficiency. These



may come from a variety of factors, including form factor
improvements, cell additive improvements, and power
management and distribution efficiency improvements. It
should be noted that efficiencies will decrease as a function of
temperature and cell age. While these estimates are based on
real-world conditions, they are mostly made using fresh cells.
So, it is expected for the overall efficiency to decrease over
the lifetime of the pack. Estimated round-trip efficiencies can
be found in Table IV.

V. BATTERY KEY PERFORMANCE PARAMETER
PROJECTIONS

Table IV presents the cell and battery level energy densities
and the efficiency projections for 2030, 2040, and 2050.
Conservative, nominal, and aggressive rates of technology
advancement are shown to capture the uncertainty of
projecting future progress.

The rate of change in each projection can be seen in Figure
4. The conservative projection is still increasing even after
2050 and is only 85% of its right-hand limit value. This is
opposed to the aggressive projection which has reached 95%
of its projected right-hand future limit value.

While it is difficult to predict future battery trends and
chemistry mixes, these the projected value fall within the
limits of the chemistries considered. New chemistries will
also enable further advances. For example Li-S has a
theoretical specific energy of a Li-S cell is 2,654 Wh/kg. If a
Li-S cell is able to achieve ~50% of its theoretical specific
energy, which is what LiCoO2/C¢ and NiMH cells are able to
achieve, then we could see cells with ~1,330 Wh/kg. Metal
air chemistries are another potential path to improvement.
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Table IV. BATTERY KEY PERFORMANCE PROJECTIONS

2030 2040 2050

C = Conservative
N = Nominal
A = Aggressive

Cell Level
Specific Energy | 359 | 489 | 584 | 459 | 638 | 795 | 561 | 764 | 957
[Wh/kg]

Pack Level
Specific Energy | 251 | 391 | 525 | 321 | 510 | 715 | 393 | 611 | 861
[Wh/kg]

C N A C N A C N A

Round Trip

86% [ 89% | 92% | 87% [ 90% | 93% | 88% | 91% | 94%

Efficiency %

V. CONCLUSIONS

This paper attempts to project future battery performance
based on examining historical commercial SOA trends as well
as practical limitations of future chemistries. An S-curve
projection of cell energy densities was combined with a
packing factor multiplier to project battery pack level specific
energies in 2030, 2040, and 2050. This work estimates
nominal cell level specific energies for rechargeable batteries
of 489 Wh/kg by 2030, 638 Wh/kg by 2040, and 764 Wh/kg
by 2050. Efficiency projections provided a basic guide to
show gradual progress from the current state of the art toward
a four-times reduction in losses by 2050. This work is
intended to support aircraft level conceptual modeling of
Electrified Aircraft Propulsion (EAP) concepts.



REFERENCES

[1] A. Misra, "Energy Storage for Electrified Aircraft: The Need for Better
Batteries, Fuel Cells, and Supercapacitors,” in IEEE Electrification
Magazine, vol. 6, no. 3, pp. 54-61, Sept. 2018, doi:
10.1109/MELE.2018.2849922.

[2] Mission “Analysis and Component-Level Sensitivity Study of Hybrid-
Electric General-Aviation Propulsion Systems,” Journal of Aircraft, Vol. 55,
No. 6, November—December 2018, doi: 10.2514/1.C034635.

[3] “A2MACI1 - automotive benchmarking ,” A2Macl, 09-Aug-2021.
[Online]. Available: https://portal.a2macl.com/. [Accessed: 24-Nov-2021].
[4] Batteriesdatabase.com. [Online]. Available:
http://www.batteriesdatabase.com/App/. [Accessed: 24-Nov-2021].

[5] D. Linden and T. B. Reddy, Handbook of Batteries, third edition. 2002.
[6] C.-X. Zu and H. Li, “Thermodynamic analysis on energy densities of
batteries,” Energy & Environmental Science, vol. 4, no. 8, p. 2614, 2011.
[7] “BYD Blade prismatic battery cell specs and possibilities (update) -
PushEVs.” https://pushevs.com/2020/05/26/byd-blade-prismatic-battery-
cell-specs-possibilities/ (accessed Apr. 05, 2022).,

[8] “Here’s Why The Battery Pack of Tesla Model S Plaid is An
Electrification Masterpiece - FutureCar.com - via @FutureCar_Media.”
https://www.futurecar.com/5106/Heres-Why-The-Battery-Pack-of-Tesla-
Model-S-Plaid-is-An-Electrification-Masterpiece (accessed Nov. 24, 2021).
[9] “Lucid Air DC Fast Charge Follow Up: Charging Losses Explained.”
https://insideevs.com/news/550923/lucid-air-charging-losses-explained/
(accessed Apr. 06, 2022).

[10] K. Li and K. J. Tseng, "Energy efficiency of lithium-ion battery used as
energy storage devices in micro-grid," IECON 2015 - 41st Annual
Conference of the IEEE Industrial Electronics Society, 2015, pp. 005235-
005240, doi: 10.1109/IECON.2015.7392923.



